

Roots of polynomials Cheat Sheet

This chapter is concerned with identifying the relationship between the roots of quadratic, cubic and quartic polynomials.

Roots of a quadratic equation

A quadratic equation could have 2 real roots, or 2 complex roots.

• If α and β are roots of the equation $ax^2 + bx + c = 0$, then:

$$\Rightarrow \alpha + \beta = -\frac{c}{a}$$
$$\Rightarrow \alpha \beta = \frac{c}{a}$$

Roots of a cubic equation

A cubic equation could have 3 real roots or 1 real root and 2 complex roots.

• If α , β and γ are roots of the equation $ax^3 + bx^2 + cx + d = 0$, then:

$$\Rightarrow \alpha + \beta + \gamma = -\frac{b}{a}$$

$$\Rightarrow \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

$$\Rightarrow \alpha\beta\gamma = -\frac{d}{a}$$

Roots of a quartic equation

A quartic equation could have 4 real roots, 4 complex roots or 2 real and 2 complex roots.

• If α . β , γ and δ are roots of the equation $ax^4 + bx^3 + cx^2 + dx + e = 0$, then:

$$\Rightarrow \alpha + \beta + \gamma + \delta = -\frac{b}{a}$$

$$\Rightarrow \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a}$$

$$\Rightarrow \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -\frac{d}{a}$$

$$\Rightarrow \alpha\beta\gamma\delta = \frac{e}{a}$$

You can use the following abbreviations to simplify things:

$$\sum \alpha = -\frac{b}{a}$$
, $\sum \alpha \beta = \frac{c}{a}$, $\sum \alpha \beta \gamma = -\frac{d}{a}$

Expressions relating to the roots of a polynomial

You can use the following rules to quickly find the values of some expressions concerning the roots of a polynomial:

Reciprocals:

$$\begin{array}{ll}
\text{Quadratic:} & \Rightarrow & \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} \\
\text{Cubic:} & \Rightarrow & \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha \beta + \beta \gamma + \gamma \alpha}{\alpha \beta \gamma} \\
\text{Quartic:} & \Rightarrow & \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\alpha \beta \gamma + \beta \gamma \delta + \gamma \delta \alpha + \delta \alpha \beta}{\alpha \beta \gamma \delta}
\end{array}$$

You may decide not to remember these results since they are quite easy to prove; in each case you simply need to combine the fractions to achieve the RHS.

Quadratic:
$$\Rightarrow \alpha^n \times \beta^n = (\alpha \beta)^n$$

Cubic: $\Rightarrow \alpha^n \times \beta^n \times \gamma^n = (\alpha \beta \gamma)^n$
Quartic: $\Rightarrow \alpha^n \times \beta^n \times \gamma^n \times \delta^n = (\alpha \beta \gamma \delta)^n$

In general, you can remember that $\sum \alpha^2 = (\sum \alpha)^2 - 2(\sum \alpha \beta)$

Rules for sums of squares:

tic:
$$\Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

 $\Rightarrow \alpha^2 + \beta^2 + \gamma^2 - (\alpha + \beta + \gamma)^2 - 2(\beta + \beta)^2 = 2(\beta + \beta)^2 + (\beta + \beta)^2 + (\beta + \beta)^2 = 2(\beta + \beta)^2 + (\beta + \beta)^2 + (\beta + \beta)^2 + (\beta + \beta)^2 = 2(\beta + \beta)^2 + (\beta + \beta)$

 $\Rightarrow \alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $\Rightarrow \alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2} = (\alpha + \beta + \gamma + \delta)^{2} - 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)$

Rules for sums of cubes:

Quadratic:
$$\Rightarrow \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

Cubic: $\Rightarrow \alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)^3 - 3(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) + 3\alpha\beta\gamma$

You won't need to know the result for a quartic polynomial.

Example 2: The equation $mx^2 + 4x + 4m = 0$ has roots of the form k and 2k. Find the

Edexcel Core Pure 1

Using $\alpha + \beta = -\frac{b}{a}$:	$\alpha + \beta = k + 2k = 3k = -\frac{4}{m}$
Simplifying:	$\therefore m = -\frac{4}{3k}$
Using $\alpha \beta = \frac{c}{a}$:	$\alpha\beta = (k)(2k) = 2k^2 = \frac{4m}{m} = 4$
Simplifying and solving for k :	
We have two sets of solutions because k has two possible values. Use $m=-\frac{4}{3k}$ to	If $k = \sqrt{2}$, $m = -\frac{4}{3\sqrt{2}} = -\frac{2\sqrt{2}}{3}$
find the corresponding value of m in each case.	If $k = -\sqrt{2}$, $m = \frac{4}{3\sqrt{2}} = \frac{2\sqrt{2}}{3}$

Example 1: The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = \frac{-1+i}{2}$ and $\beta = \frac{-1-i}{2}$. Find integer values for a, b and c.

Using $\alpha + \beta = -\frac{b}{a}$	$\alpha + \beta = \frac{-1+i}{2} + \frac{-1-i}{2} = -1 = -\frac{b}{a}$
Simplifying:	$\therefore a = b$
Using $\alpha \beta = \frac{c}{a}$	$\alpha\beta = \left(\frac{-1+i}{2}\right)\left(\frac{-1-i}{2}\right) = \frac{1}{2} = \frac{c}{a}$
Simplifying:	$\therefore \frac{1}{2}a = c$
Rewriting the quadratic with $b=a$ and $c=\frac{1}{2}a$: Dividing through by a :	$ax^{2} + ax + \frac{1}{2}a = 0$ $x^{2} + x + \frac{1}{2} = 0$
Multiplying by 2 to ensure that the constant is an integer:	$2x^2 + 2x + 1 = 0$ a = 2, b = 2, c = 1

Example 3: α , β and γ are roots of the cubic the values of:	equation $7x^3 - 4x^2 - x + 6 = 0$. Find
(a) $\alpha + \beta + \gamma$ (b) $\alpha\beta\gamma$	(c) $\alpha^3 \beta^3 \gamma^3$ (d) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
Using $\alpha + \beta + \gamma = -\frac{b}{a}$:	$\alpha + \beta + \gamma = -\frac{-4}{7} = \frac{4}{7}$
Using $\alpha\beta\gamma = -\frac{d}{a}$:	$\alpha\beta\gamma = -\frac{6}{7}$
Using $\alpha\beta = \frac{c}{a}$:	$\alpha^3 \beta^3 \gamma^3 = (\alpha \beta \gamma)^3 = \left(-\frac{6}{7}\right)^3$ $= -\frac{216}{343}$
Using the reciprocal result for cubics:	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma}$
Using $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$:	$\alpha\beta + \beta\gamma + \gamma\alpha = -\frac{1}{7}$
Substituting back into the reciprocal result:	$\therefore \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{-\frac{1}{7}}{-\frac{6}{7}} = \frac{1}{6}$

Example 4: The roots of the equation $x^4 + (a)$ Write down the values of $\sum \alpha$, $\sum \alpha \beta$, $\sum (b)$ Hence find the values of: (i) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (ii) $\alpha^2 + \beta^2 + \gamma^2 + \delta$	$lphaeta\gamma$ and $\sum lphaeta\gamma\delta$.
Using $\sum \alpha = \alpha + \beta + \gamma + \delta = -\frac{b}{a}$:	$\alpha + \beta + \gamma + \delta = 0$
Using $\sum \alpha \beta = \frac{c}{a}$	$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ $\frac{2}{2}$

u	
Using $\sum \alpha \beta = \frac{c}{a}$	$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ $= \frac{2}{1} = 2$
Using $\sum \alpha \beta \gamma = -\frac{d}{a}$	$\sum \alpha \beta \gamma = \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta$ $= -\frac{-1}{1} = 1$
Using $\alpha\beta\gamma\delta = \frac{e}{a}$	$\sum \alpha \beta \gamma \delta = \alpha \beta \gamma \delta = \frac{3}{1} = 3$
$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\alpha\beta\gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta}{\alpha\beta\gamma\delta}$	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\sum \alpha \beta \gamma}{\alpha \beta \gamma \delta} = \frac{1}{3}$
Using $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 - 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)$	$\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}$ $= \left(\sum \alpha\right)^{2} - 2\left(\sum \alpha\beta\right)$ $= (0)^{2} - 2(2) = -4$

Linear transformations of roots

Given a polynomial (up to the fourth degree), you need to be able to find the equation of a second polynomial whose roots are a linear transformation of the roots of the first.

• If a polynomial $f(x) = ax^4 + bx^3 + cx^2 + dx + e$ has roots α, β, γ and δ then the polynomial with roots $g\alpha + h, g\beta + h, g\gamma + h$ and $g\delta + h$, where g and h are real constants, is given by $f\left(\frac{w-h}{a}\right)$

The same logic follows if the polynomial is cubic or quadratic.

Example 5: The quartic equation $2x^4 + 4x^3 - 5x^2 + 2x - 1 = 0$ has roots α, β, γ and δ . Find equations with integer coefficients that have roots: (i) (2α) (2β) (2γ) and (2δ) (ii) $(\alpha - 1)$ $(\beta - 1)$ $(\gamma - 1)$ and $(\delta - 1)$

L	(i) (2α) , (2β) , (2γ) and (2δ) .	(p-1), $(p-1)$, $(p-1)$ and $(p-1)$.
	(i) If $f(x) = 2x^4 + 4x^3 - 5x^2 + 2x - 1 = 0$ then the new equation will be given by $f\left(\frac{w}{2}\right)$.	$f\left(\frac{w}{2}\right) = 2\left(\frac{w}{2}\right)^4 + 4\left(\frac{w}{2}\right)^3 - 5\left(\frac{w}{2}\right)^2 + 2\left(\frac{w}{2}\right) - 1 = 0$
	Simplifying:	$\Rightarrow \frac{1}{8}w^4 + \frac{1}{2}w^3 - \frac{5}{4}w^2 + w - 1 = 0$
	Multiplying by 8 to ensure all coefficients are integers:	$\Rightarrow w^4 + 4w^3 - 10w^2 + 8w - 8 = 0$
	(ii) If $f(x) = 2x^4 + 4x^3 - 5x^2 + 2x - 1 = 0$ then the new equation will be given by $f(w + 1)$.	$f(w+1) = 2(w+1)^4 + 4(w+1)^3 - 5(w+1)^2 + 2(w+1) - 1 = 0$
	Expanding brackets then simplifying:	$\Rightarrow 2(w^4 + 4w^3 + 6w^2 + 4w + 1) + 4(w^3 + 3w^2 + 3w + 1) - 5(w^2 + 2w + 1) + 2w + 2 - 1 = 0$ $\Rightarrow 2w^4 + 12w^3 + 19w^2 + 12w + 2 = 0$

